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1 Introduction

Evolutionary algorithms (EAs) require large scale computing resources when
tackling real world problems. Such computational requirement is derived from
inherently complex fitness evaluation functions, large numbers of individuals
per generation, and the number of iterations required by EAs to converge
to a satisfactory solution. Therefore, any source of computing power can sig-
nificantly benefit researchers using evolutionary algorithms. We present the
use of volunteer computing (VC) as a platform for harnessing the computing
resources of commodity machines that are nowadays present at homes, com-
panies and institutions. Taking into account that currently desktop machines
feature significant computing resources (dual cores, gigabytes of memory, gi-
gabit network connections, etc.), VC has become a cost-effective platform for
running time consuming evolutionary algorithms in order to solve complex
problems, such as finding substructure in the Milky Way Galaxy, the problem
we address in detail in this chapter.

In order to tackle the complexity of evolutionary algorithms when applied
to real world problems, different parallel models and computer architectures
have been used in the past, for instance the parallel transputer network ar-
chitecture [5] or a 10 nodes Beowulf style cluster [7] improved later to 1000
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D. Lombraña González · F. Fernández de Vega
Centro Universitario de Mérida, Universidad de Extremadura.
Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain.
e-mail: fcofdez@unex.es,daniellg@unex.es

1



2 Authors Suppressed Due to Excessive Length

Pentiums nodes1. Nowadays, large efforts are still carried out to improve re-
sults while reducing computing time, by embodying parallel techniques within
EAs (see e.g., [21, 18]).

One of the most promising technologies capable of circumventing the high
computational requirements of EAs, and thus reducing the solution time of
many applications is the grid computing paradigm [32]. Grid computing gen-
erally refers to the sharing of computing resources within and between orga-
nizations by harnessing the power of super computers, clusters and desktop
PCs, which are geographically distributed and connected by networks. Grid
nodes use a special software, called middleware, to coordinate distributed
computations.

Two of the most used middleware frameworks in the world are Globus
[22] and gLite [33]. These middleware frameworks are normally complex and
focused on upmarket hardware and facilities. For this reason, other grid mid-
dleware employs commodity hardware to reduce economic investment and to
handle the complexity of deployment to idle desktops, thus giving rise to desk-
top grids (DGC). Examples of DGC middleware are Condor [37], Xtremweb
[19] and BOINC [2].

Two main kinds of DGC are available, enterprise grids and volunteer com-
puting grids. Enterprise grids are typically more homogeneous and usually
entail processors connected by a Local Area Network (LAN) under a single
root of administrative control, albeit with potentially different administrative
units below. On the other hand, volunteer computing grids (e.g., as enabled
by BOINC [2]) are composed of Internet-connected processors volunteered
by users worldwide, resulting in larger but more heterogeneous grids.

Desktop grids have the potential to provide significant processing power
since desktop computers have become an essential working tool in any market.
Companies and institutions provide commodity machines to their employees
to improve their efficiency when solving their everyday tasks. The hardware
specifications of those desktop machines become more powerful everyday: for
example, quad cores, 4 gigas of RAM memory and up to 1 Terabyte hard
disks, are not uncommon. Thus, desktops are really good candidates for run-
ning complex and time consuming computational experiments. Furthermore,
if we take into account that most of those desktops are underutilized by
their owners, there is a potential for a large processing and storage capability
within current energy usage [4].

At the same time, researchers commonly face the opposite problem: real
world problems approached with EAs require more computing resources than
what researchers have at their disposal. Thus, a question naturally arises: why
not to exploit those unused available desktop resources to help scientific ap-
plications? Desktop grid computing, and in particular, volunteer computing,
provides a plausible answer to this question (for the sake of simplicity, we will
employ the term volunteer computing (VC) from now on as an umbrella for

1 For further details see http://www.genetic-programming.com/machine1000.
html
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different but related terms: DGC, enterprise grids and volunteer computing,
given the specific study described and the real-world application shown in
this chapter).

VC is being successfully used for addressing problems related to climate
prediction models [1], high energy physics [45], protein folding [42] and as-
tronomy [3], [45], to name but a few. Frequently, projects rely completely on
the computing power of volunteers, converting the users in a fundamental
part of the project.

Yet, the number of projects using VC is still relatively narrow, and partic-
ularly unknown by Computational Intelligence community of researchers. In
this chapter, we analyze the application of VC to real life problems addressed
by means of Evolutionary Algorithms (EAs), and also possible extensions to
other Computational Intelligence techniques. We show the VC technology, its
cooperation with EAs for solving hard problems, and a real-life application:
The Milky Way at home project.

The chapter is organized as follows: Section 2 presents related work on vol-
unteer computing and evolutionary algorithms. Section 3 describes a specific
astronomy problem to which we apply EAs on VC: finding sub-structure in
our own Milky Way. Section 4 describes asynchronous versions of evolutionary
algorithms, especially designed to be executed on heterogeneous, failure-prone
volunteer computing environments. Section 5 discusses their implementation
in the MilkyWay@Home project highlighting interesting results. Finally, we
conclude with remarks and potential avenues for future work.

2 Related Work

The Berkeley Open Infrastructure for Network Computing (BOINC) [2] is
the generalization of the well known SETI@Home project [3]. This volunteer
computing middleware framework aggregates the computing power of idle
desktop machines provided by volunteers worldwide (e.g., home computers
or office workstations). One of the main advantages of using VC systems
is that they provide large-scale parallel computing capabilities for specific
classes of applications at a very low cost. Consequently, VC is a promising
platform for running real world optimization problems solved by means of
EAs.

The following sub-sections present the first VC projects, the VC technology
more widely used and its relationships with Parallel EAs: possibilities of
collaboration and first proposals.
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2.1 Volunteer computing

The first successful VC project was “The Great Internet Mersenne Prime
Search” (GIMPS) [50]. The aim of this project is to find new mersenne primes.
The project has engaged 11,875 volunteers who provide 73,439 CPUs giving,
as of April 2009, a processing power of 44.3 Teraflops.

Another successful VC project is Distributed.net [48]. The aim of this
project is to win the RSA Secret Key challenge which consist of deciphering
an RSA text with different difficulties. Distributed.net has won two of the
challenges, the 56 and 64 RC5 bit encryption challenges. Additionally the
Distributed.net team is also running a distributed project named OGR which
tries to find the Optimal Golomb Ruler [49] for 24 or more marks. At the time
of this writing, Distributed.net has found a solution for the OGR-24, 25 and
26. Currently they are trying to find a solution to the OGR of 27 marks.

Both projects, GIMPS and Distributed.net, are specialized VC projects
for a given application. Thus, those systems cannot be used as a general
tool for running any kind of research project. Nevertheless, GIMPS and Dis-
tributed.net are good examples of successful ad hoc VC projects.

Over the years, several general purpose VC middleware have been de-
veloped including Xtremweb [19], Condor [37] and BOINC [2] (as described
above, we consider all the technology from the point of view of VC, and avoid
subtle distinctions about DGC or VC technology).

From all the general purpose VC middleware frameworks, BOINC is the
most used one. BOINC has the largest pool of volunteers/users around the
world. As of April 2009, BOINC has 1, 622, 500 users, providing 3, 849, 182
processors which give 1, 399.4TeraFLOPS of aggregated computing power to
VC applications. For this reason, BOINC is the best candidate for deploying
an application using volunteer computing. BOINC volunteers are willing to
collaborate with new projects of interest.

In summary, VC is a good candidate to run computationally intensive
problems and could thus be employed to obtain “free” computing resources
for running real world EA tackling hard problems. In reality, resources are not
completely “free”, since a community of volunteers needs to be continuously
informed of the scientific goals and outcomes of the project. New volunteers
need to be recruited, and existing volunteers need to be retained. However, the
benefit of the keeping volunteers informed is the ensuing “open democratic
science” where people can choose which research projects are worthy of their
computing resources.

2.2 BOINC: a volunteer computing technology

As explained above, BOINC has the largest user and volunteer community.
Currently, there are 28 official supported projects and 23 non-verified BOINC
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projects 2. These projects belong to different research fields like: astronomy,
physics, chemistry, biology, medicine, cognitive science, earth and environ-
mental science, mathematicians, games, etc.

BOINC is a multiplatform and open source middleware that comes from
the SETI@home project [3]. SETI@home aims at finding extraterrestrial in-
telligence by analyzing radio telescope data. SETI@home has engaged the
largest community of BOINC users, when writing this chapter 944, 691 users
are providing 2, 239, 695 hosts which produces a computer power equal to
515.6 TeraFLOPS.

Due to the success of SETI@home, the developers decided to create
BOINC, based on the SETI@home software. The goal was to provide a gen-
eral tool for developing new DGC projects based on their technology. The
main features of BOINC are:

• Project autonomy. Each BOINC project is independent, so each project has
its own servers and databases. Additionally there is no central directory
or approval process for the projects.

• Volunteer flexibility. Volunteers can decide in which and how many projects
they will take part. Volunteers also decide how their resources will be
shared between different projects.

• Flexible application framework. Applications coded in C, C++ or Fortran
can be run within BOINC with little or no modification.

• Security. BOINC employs digital signatures to protect clients from dis-
tributing viruses or malware.

• Server performance and scalability. The BOINC server is extremely effi-
cient, so that a single mid-range server can handle and dispatch millions
of jobs per day. The server architecture is also highly scalable by adding
more machines and distributing the load between them.

• Open source. The BOINC code is released under the Lesser GNU General
Public License version 3 [23].

BOINC is suitable for applications that have one or both of the following
requirements:

• large computation requirements,
• storage requirements.

The main requirement for running an application within BOINC is that it
is divisible into multiple sub-tasks or jobs that can be run independently. As
we may foresee, EAs are perfect candidates for running projects supported by
BOINC: the standard parallel evaluation of individuals could be performed
on different volunteer computers.

If the project is considering to employ basically volunteer resources, the
project’s web site must be compelling to attract volunteers and take into

2 For further details see http://boinc.berkeley.edu/projects.php and http:

//boinc.berkeley.edu/wiki/Project_list
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account the volunteer’s bandwidth connections: lots of users do not have fast
upload/download speeds.

BOINC is composed by two key elements: the server and the clients.
BOINC employs a master-slave architecture. In order to facilitate the com-
munications between the clients and the server, the HTTP protocol is used
and the clients start always the communications. Thanks to this approach,
the clients can collaborate with science even if they are behind a firewall
or a proxy –general security set up for communications on institutions like
companies or universities.

The BOINC server is in charge of:

• Hosting the scientific project experiments. A project is composed by a
binary (the algorithm or application) and some input files.

• Creation and distribution of jobs. In BOINC’s terminology a job is called
a “work unit” (WU). A WU describes how the experiment must be run
by the clients (the name of the binary, the input/output files and the
command line arguments).

On the other hand, the BOINC client connects to the server and asks for
work (WU). The client downloads the necessary files (WU) and starts the
computations. Once the results are obtained, the client uploads them to the
server.

BOINC measures the contributions of volunteers with credit. A credit is a
numerical measure of the work done by a given volunteer and his computers.
Volunteers care so much about the obtained credit when collaborating with a
project, and it is one of the leitmotif of continuing collaborating with a given
project. Thus, it is very important to handle correctly the granted credit to
users, as BOINC projects can grant/handle credit differently.

Volunteer computing has a main drawback: resources are not reliable. For
this reason, many types of attacks are possible in BOINC: hacking the server,
abuse of participant hosts, etc. From all the possible attacks, there are two
which are very important:

• Result falsification. Attackers return incorrect results.
• Malicious executable distribution. Attackers break into a BOINC server

and, by modifying the database and files, attempt to distribute their own
executable (e.g. a virus) disguised as a BOINC application.

In order to avoid these possible attacks, BOINC provides several mecha-
nisms to reduce the likelihood of some of the above attacks:

• Result falsification can be reduced using replication: a result is sent to at
least two different clients to check out that the obtained result has not been
forged. BOINC provides different types of replication: fuzzy, homogeneous
or adaptive replication.

• Malicious executable distribution is avoided as BOINC uses digital signa-
tures to distribute the binaries. The server uses two signatures, one public
and the other private to sign the applications. The private signature is
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used to sign locally the binaries and the public signature is distributed
to clients for checking the origin of the application by the clients. It is
important to have the private key stored in safe storage not connected to
Internet to avoid possible network break-ins.

To sum up, BOINC provides enough facilities to reduce as much as possible
likelihood of attacks under a volunteer computing infrastructure. However,
without the cooperation of administrators, the security could be risked if for
example BOINC keys are stored in the server machine or protocols like Telnet
are being used for accessing the machine.

2.3 Parallel Evolutionary Algorithms and VC

EA practitioners have found that the time to solution on a single computer
is often prohibitively long. For instance, Trujillo et al. employed more than
24 hours to obtain a solution for a real world computer vision problem [52].
Times to solution can be much worse, taking up to weeks or even months.
Consequently, several researchers have studied the application of parallel
computing techniques and distributed computing platforms to shorten times
to solution [20, 51].

Examples of these efforts are the old-fashioned Transputer platform [5],
new modern frameworks such as Beagle [26], or grid based tools like Paradiseo
[8]. However, there are not many real world problems that are using VC for
running experiments using EAs.

Considering the VC technology, two main parallel approaches for running
EAs are useful for profiting volunteer computing resources:

• Parallel fitness evaluation. Individuals can be distributed to be evaluated
on different volunteer computers simultaneously. This is useful when the
fitness evaluation time is the most time-consuming part of the algorithm.

• Parallel execution of experiments. When a number of runs are required for
obtaining statistically significant results, different runs can be distributed
on a number of computers. This model is also useful for high-throughput
parameter sweep experiments.

The latest case is particularly useful when running experiments in conjunc-
tion with VC technology: no changes are required in the main EA algorithm.
The algorithm is simply sent to a number of computers, with different input
parameters if required.

If we focus on some of the techniques comprised within EAs, only Chávez
et al. [40] presented an extension to the well-known genetic programming
framework LilGP [14], that runs within a BOINC infrastructure. In this
work, the experiments were a proof of concept using a couple of well-known
GP problems: the ant on the Santa fe trail and the even parity 5 problem.
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Moreover, the experiments only used a controlled environment without the
collaboration of external volunteers.

A more generic approach was presented by Lombraña et. al. [27, 35]. The
idea was to run a modern and widely used framework for EAs, ECJ [36],
within a BOINC infrastructure. In this case, the experiments used a real
environment but only a reduced number of volunteers where engaged. Fur-
thermore, the experiments were again complex GP benchmarks but no real
world optimization problems were addressed.

Another approach was presented by Samples et al. [43]. Samples et. al.
showed the feasibility of using DGC for a typical genetic programming pa-
rameter sweep application using a pool of desktop PCs. Nevertheless, the
lack of a standard middleware and a genetic programming tool has kept this
approach from being commonly adopted by researchers.

All the previous approaches were simple proof-of-concepts, thus, to the
best of the author’s knowledge, the only real-world problem that is already us-
ing VC and Evolutionary Algorithms is the MilkyWay@home project; which
is described in depth within the next sections.

3 Finding Milky Way Galaxy Substructure

The Milky Way spheroid is one of the major components of the Galaxy. It
occupies a roughly spherical volume with the other components (disks, bulge,
bar, etc.) embedded in it. Despite its volume it produces only a small fraction
of the starlight emitted by the Galaxy. The stellar spheroid is composed of
primarily older and more metal poor stars that produce little light compared
to the brighter, more massive, stars that form in the gas-rich components
of the disk. The majority of the mass of the Milky Way exists within the
spheroid as dark matter; however, the nature, distribution, and structure of
this mass is unknown.

With the construction and operation of large scale surveys such as the
Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (2MASS),
and many other current and upcoming projects there is an “astronomical”
amount of data to be sorted through. This huge amount of data is not only
composed of photometric studies, but large numbers of stellar spectra are
being taken with many surveys being operated or completed solely focused on
taking a large number of incredibly accurate spectra, the Sloan Extension for
Galactic Understanding and Exploration (SEGUE) for example. This increase
in the amount of data, as well as the increase in the accuracy of this data
has led to many discoveries involving the spheroid and substructure in the
Galaxy. The Sagittarius dwarf spheroidal galaxy (Sgr dSph) and its associated
tidal stream, were the first known example of a current merger event to be
discovered [30, 28, 29, 56]. Since its discovery, the study of substructure has
dominated the research efforts towards the spheroid. This has resulted in
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the discovery of several additional dwarf galaxies, tidal streams and globular
clusters of the Milky Way as can be found in [39, 55, 53, 15, 38, 6, 54], and
[57] among others.

For many years, the spheroid was imagined to have evolved from outward
flows from the disk of the Galaxy [17], or to have formed in conjunction
with the rest of the Galaxy and gradually evolved to its current state [44].
It has also long been imagined to have a smooth and continuous power law
density distribution [25]. However, the advancement in technology and anal-
ysis techniques have discovered the large amount of substructure, discussed
above, and has shown that at least some of the spheroid was constructed via
merger events and that the spheroid was composed of debris from hierarchical
structure formation [24]. A shift in the thinking of the spheroid has therefore
come about, and the more substructure that is discovered the stronger the
case that the spheroid is non-smooth and was constructed primarily in this
manner.

3.1 Why substructure?

Dwarf galaxies and star clusters are gravitationally bound systems, which
can themselves be bound in the gravitationally potential of the Milky Way.
As dwarf galaxies approach the center of the Milky Way, the differential
gravitational forces can pull stars out of their bound orbits in the dwarf
galaxy, and cause them to orbit the Milky Way instead. Stars with lower
energy are pulled ahead of the dwarf galaxy core while stars with higher
energy fall behind, resulting in the creation of long streams of stars, also
known as tidal streams, that extend the longer the dwarf is bound by the
Milky Way. As this disruption continues, the streams will become longer and
cover more of the sky as more and more of the stars are stripped from the
smaller body. Over time, all traces of the merging body will fade as the stars
become more and more dispersed and become assimilated into the Milky Way
spheroid. These long tidal streams of stars provide a unique opportunity for
these are the only stars in which it is possible to know not only where they
are and where they are going, but also where they have been. They trace out
the path the merging body took as it traversed the gravitational potential
of the Milky Way. In this way substructure in the spheroid can be seen as
something of a cosmic fingerprint powder bringing all of the details of the
spheroid itself into focus.

By studying the substructure of the spheroid, specifically that of tidal
streams, it is possible to study the galactic potential. This is not done via
direct measurement, but is primarily studied via simulations, which are ad-
justed to replicate the observational data. The more observational points
with which to compare and the more accurate those points are, the more
precisely the simulation can constrain the models of the Galactic potential.



10 Authors Suppressed Due to Excessive Length

As previously stated, the majority of the mass of the Milky Way is within
the spheroid and this is composed of dark matter. Therefore, the dominant
component of the Galactic potential is provided by the spheroid and specifi-
cally the dark matter of the spheroid. Thus, by constraining the models of the
Galactic potential it is possible to determine the distribution of dark matter
within the Galaxy.

It is important to develop techniques that are accurate and efficient means
of studying substructure, so the results may then be used to compare against
the simulations. There are primarily two methods used for discovery and
study of substructure: kinematical and spatial. The kinematical approach
attempts to find co-moving groups of stars that can be identified by groups
of stars in a similar location with common velocity. These are indicators
that the stars might have come from a common structure instead of simply
being part of the smooth spheroid. This approach, though potentially more
powerful, is limited in that it requires a spectroscopic analysis of all stars
studied in order to determine the velocities. Accurate stellar spectroscopy
is significantly harder to obtain than photometry. The second approach for
substructure discovery and analysis is to simply search for overdensities in the
star counts within the data. This is done by looking for statistically relevant
deviations from the assumed background distribution of the spheroid. This
technique benefits from the fact that only a photometric analysis of the data
need be accomplished, thus the amount of data available for a study of this
kind is much greater. The majority of the substructure discoveries in the
Milky Way spheroid have been made through analysis of the photometric
data.

3.2 The Maximum Likelihood Approach to
Substructure

We have developed a maximum likelihood method for the discovery and anal-
ysis of substructure within the stellar spheroid. This method seeks to pro-
vide an efficient, automated, accurate, and mathematically rigorous means
to study substructure. The method has been designed to determine the spa-
tial characteristics of tidal debris and the stellar spheroid through the use of
photometric data.

The SDSS is a large, international collaboration that has generated an
enormous amount of data over 10,000 square degrees of the sky. The SDSS
data was taken with a 2.5m dedicated telescope at Apache Point Observatory
in New Mexico. Due to its placement in the northern hemisphere, the data
covers primarily the north Galactic cap with some minimal coverage in the
south. The SDSS survey area is composed of 2.5◦ wide stripes taken on great
circles across the sky (the entire sky is comprised of 144 such stripes) with
data taken at high Galactic latitude. Since the SDSS imaging survey is well



Title Suppressed Due to Excessive Length 11

calibrated and is comprised of mostly contiguous data, it is a good candidate
for studying substructure as it traces across the sky.

Specifically, we extract stars of the color of blue F turnoff stars in SDSS
data to study substructure. The relatively large number of F turnoff stars
make them a good candidate for a statistical study of this nature. Also, the
color of F turnoff stars within the spheroid is bluer than that of the Milky
Way disk, therefore contamination of stars from non-spheroid components
can be minimized necessitating a model for only one Galaxy component,
the spheroid. Finally, F turnoff stars were chosen for this study for it is
possible to reasonably estimate their distance although not as well as other
less numerous “standard candles.” By modeling the distribution of absolute
magnitudes that F turnoff stars can take, it is possible to utilize stars of this
type quite effectively.

Tidal streams generally follow very complex paths across the sky and are
therefore difficult to model. However, over small volume, such as a 2.5◦ wide
stripe of data taken by the SDSS, the tidal stream may be approximated as
linear. In this manner, the tidal stream is estimated in a piecewise fashion
across the sky with each stripe of data maintaining its own set of stream
parameters. In this way, the tidal stream density distribution is modeled as a
cylinder with Gaussian fall off from its axis. The tidal stream model is thus
parameterized by the cylinder position, its orientation, and the standard de-
viation of the Gaussian fall off. The smooth spheroid component is modeled
as a standard Hernquist profile and is therefore parameterized with a scal-
ing factor in the Galactic Z direction, and a core radius of the power law
component. Finally, the absolute magnitude distribution in F turnoff stars is
modeled as a Gaussian distribution with fixed variance.

Utilizing the above models we developed a likelihood function for the prob-
ability of the data given the model and the parameters. The input data set is
thus composed of a three column file in which each row represents the spatial
position of an F turnoff star as observed via the SDSS telescope. An opti-
mization method is then applied to the likelihood function and the best-fit
parameters are determined for the given dataset and the models. A detailed
description of the model descriptions and likelihood function can be found
in [11]. The approach of this algorithm offers a unique advantage in that the
spheroid and tidal debris are fit simultaneously. Because of this, it becomes
possible to probabilistically extract the tidal debris distribution from that
of the spheroid. In this manner, the structures can then be separately an-
alyzed via additional means. This provides a method of independent study
previously unavailable to researchers.

After successfully testing the algorithm upon a simulated data set, the
initial goal has been to analyze the Sgr tidal stream across all of the SDSS
data. The algorithm has successfully been used to analyze the stream in the
three stripes of data in the southern Galactic cap. The results presented in
[11] for the analysis of stripe 82 were a success, for the well established values
determined via other methods were recovered, and the error bars upon the
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results generated via this method are much smaller than those previously
achieved. However, the true potential of this method can be seen in the
analysis of the two surrounding stripes [10]. These include a new detection
of the Sgr tidal stream in the south as well as the great improvement in the
position of the previous detection in the opposing stripe. Figure 1 depicts
the results of analyzing these three stripes and how these results compare
to a model of the Sgr dSph disruption. Ongoing research seeks to create a
complete map of the leading Sgr tidal stream throughout the north Galactic
cap (and fill in the northern part of the figure). A preliminary analysis of part
of this data has already shown significant discrepancy between the model of
the Sgr dSph disruption and the spatial properties being determined via this
method. However, the breadth of this discrepancy will not be known until a
complete analysis of the data has been performed. It is also quite interesting
to note that in order to accurately fit the data in the northern stripes, it is
necessary to fit multiple tidal streams within the same dataset, for there is
substructure beyond the Sgr tidal stream in the data collected from the north.
Therefore, even though the analysis of the Sgr tidal stream is the primary
concern of the project at this stage, an analysis of other substructure will be
occurring simultaneously.

Following the completion of the Sgr tidal stream study, we would like to use
the information obtained to attempt to constrain the models for the Galactic
potential by fitting a simulation of the Sgr dSph to the values obtained in
this study. This will be difficult, for an appropriate measure of the “goodness
of fit” must be determined with which to compare the simulation and the
analysis results. Also, the computational complexity of an undertaking of
this nature is far beyond that of even the current algorithm. This is due to
not only having to analyze the data, but having to actually create the data
via N-body simulation. Another topic of great interest that will provide a
significant challenge, is an effort to determine the true distribution of the
smooth spheroid component. To do this, all substructure must be removed
from the data via this algorithm and then all remaining data (representing
the smooth spheroid) fit at once. This will demand significant changes to the
current algorithm to fit over multiple datasets at once, plus a method for
determining the correct model must be determined as well.

4 Asynchronous Search

Maximum likelihood estimation attempts to find the set of parameters of
a mathematical function that best fits a given data set. The mathematical
function represents a scientific model, for example, the geometrical substruc-
ture of the stars in a galaxy wedge, given certain parameters such as a star
stream position, width, intersection angle, etc. The data set represents the
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Fig. 1 Sagittarius dwarf disruption with fits to SDSS southern stripes. Plotted here
is the Sgr dSph face on, which is nearly orthogonal to the plane of the Milky Way.
A galaxy consistent with the Milky Way has been overlayed and the Solar position
is marked with a star. The dotted arrow shows the orbital path of the dwarf and the
current position of the Sgr dwarf core is clearly labeled. The points following this
orbital path are a subsampling of an N-body simulation consistent with the result
from [34]. The complete arrows depict the position and spatial direction of the Sgr
tidal stream within the three southern SDSS stripes (from left:79, 82, and 86). The
remaining points represent a subsampling of those stars found to fit the density profile
of the stream within the stripe using the separation technique to extract the stream
from the stellar spheroid.
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“ground truth”, for example, the observed photometric galaxy data, or the
result of an N-body simulation.

Population based search methods such as differential evolution (DE) [46],
genetic algorithms (GA) [9], and particle swarm optimization (PSO) [31, 16]
use the notion of generations of individuals in a population that evolves
over time. Analogous to their biological counterparts, the most fit individuals
have better probability of survival and reproduction in newer generations.
We call genetic search the process of using genetic algorithms to search in
n-dimensional space for the best set of parameters that optimizes a given
n-arity function. In genetic search, individuals are sets of parameters to a
function, and their fitness value is computed by applying the function to the
parameter set. For this work, individuals are sets of real valued numbers,
which are the input parameters to the maximum likelihood calculation.

Traditional population based search methods, such as differential evolu-
tion, genetic search and particle swarm optimization are typically iterative
in nature, which limits their scalability by the size of the population. This
section introduces an asynchronous search (AS) strategy, which while being
similar to traditional population based search methods in that it keeps a
population of parameters (or individuals) and uses combinations and modi-
fications of those individuals to evolve the population. The main difference
is that AS uses a master-worker approach instead of a parallel model of con-
currency. Rather than iteratively generating new populations, new members
of the population are generated in response to requests for work and the
population is updated whenever work is reported to the master.

Asynchronous search consists of two phases and uses two asynchronous
message handlers. The server can either be processing a request work or
a report work message and cannot process multiple messages at the same
time. Workers repeatedly request work then report work. In some ways this
approach is very similar to steady-state genetic search, where n members of
the population are replaced at a time by newly generated members.

In the first phase of the algorithm (while the population size is less than
the maximum population size) the server is being initialized and a random
population is generated. When a request work message is processed, a random
parameter set is generated, and when a report work message is processed,
the parameters and the fitness of that evaluation are added to the server’s
population. When enough report work messages have been processed, the
algorithm proceeds into the second phase which performs the actual genetic
search.

In the second phase, report work will insert the new parameters and their
fitness into the population but only if they are better than the worst current
member and remove the worst member if required to keep the population
size the same. Otherwise the parameters and the result are discarded. Pro-
cessing a request work message will either return a mutation or reproduction
(combination) from the population. Section 4.1 describes different methods
for this in detail.
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This algorithm has significant benefits in heterogeneous environments be-
cause the calculation of fitness can be done by each worker concurrently
and independently of each other. The algorithm progresses as fast as work
is received, and faster workers can processes multiple request work messages
without waiting on slow workers. This approach is also highly scalable, as the
only limiting factor is how fast results can be inserted into the population
and how fast request work messages can be processed. It is also possible to
have multiple masters using an island approach for even greater scalability.
This approach is also highly resilient to client side faults, because unreturned
work does not effect the server side genetic search.

4.1 Combination Operators

The previous section gave a generic outline for asynchronous search which
allows for various combination and mutation operators to be used in gener-
ating new parameter sets to be evaluated. This makes the algorithm easily
adaptable, which is a desirable quality because no particular search method
is ever optimal for all optimization problems. This section describes using the
asynchronous search strategy to implement both genetic search (AGS) and
particle swarm optimization (APSO).

4.1.1 Asynchronous Genetic Search (AGS)

Asynchronous genetic search generates new individuals using either mutation
or a combination operator, as follows.

Mutation Operators

The standard mutation operator for an optimization problem with a con-
tinuous domain is to take an individual from the population, and randomly
regenerate one of its parameters within the bounds of that parameters. This
is often modified so that the range in which the parameter can be modified
is gradually reduced as the search progresses, which can result in improved
convergence rates.

Average Operator

The standard and most simple combination operator for real variables over
a continuous domain is to take the average of two parent individuals and use
that as the child.



16 Authors Suppressed Due to Excessive Length

Double Shot Operator

Fig. 2 The double shot operator generates three children: the average, a point outside
the worse parent (higher), and a point outside the better parent (lower), the latter two
points are a distance from the average equal to the distance between their parents.

Desell et al. [12] show that using a double shot operator as opposed to a
standard average operator can significantly improve convergence rates for the
astronomical modeling application. The double shot operator produces three
children instead of one. The first is the average of the two parents, and the
other two are located outside the parents, equidistant from the average (see
Figure 2). This approach is loosely based on line search, the point outside the
more fit parent is in a sense moving down the gradient, while the point outside
the less fit parent is moving up the gradient created by the two parents. The
motivation for the latter point is to escape local minima.

Probabilistic Simplex Operator

Fig. 3 The simplex method takes the worst point and reflects it through the centroid
of the remaining points. The probabilistic simplex operator randomly generates a
point on some section of the line connecting the worst point and its reflection.

Unfortunately, all of these approaches require synchrony by creating de-
pendence between fitness calculations. While it is not possible to effectively
perform the traditional Nelder-Mead simplex search in a highly heterogeneous
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and volatile environment like BOINC, a probabilistic operator can mimic its
behavior. The Nelder-Mead simplex search takes N + 1 sets of parameters,
and performs reflection, contraction and expansion operators between the
worst set of parameters and the centroid of the remaining N (see Figure 3).
After calculating the centroid, a line search is performed by expanding or
contracting the simplex along this line. Because in our asynchronous model
it is not possible to iteratively perform expansions and contractions, a ran-
dom point is selected on the line joining the worst point and its reflection.
There are three parameters involved in this operator, N , the number of points
used to form the simplex (chosen randomly from the population), and two
limits l1 and l2 which specify where on the line the point can be generated.
For example, l1 = −1 would set one limit to the reflection and l2 = 1 would
set the other limit to the worst point. For the purposes of this study, we use
l1 = −1.5 and l2 = 1.5 and examine how children generated from different
parts of this line effect the

4.1.2 Asynchronous Particle Swarm Optimization (APSO)

Particle swarm optimization was initially introduced by Kennedy and Eber-
hart [31, 16] and is a population based global optimization method based on
biological swarm intelligence, such as bird flocking, fish schooling, etc. This
approach consists of a population of particles, which ”fly” through the search
space based on their previous velocity, their individual best found position
(cognitive intelligence) and the global best found position (social intelligence).
The population of particles is updated iteratively as follows, where x is the
position of the particle at iteration t, v is it’s velocity, p is the individual
best for that particle, and g is the global best position. Two user defined
constants, c1 and c2, allow modification of the balance between local (cogni-
tive) and global (social) search, while another constant the inertia weight, w,
scales the particle’s previous velocity. The search updates the positions and
velocities of the particles as follows:

vi(t+1) = w ∗ vi(t)+ c1 ∗ rand() ∗ (pi −xi(t))+ c2 ∗ rand() ∗ (gi −xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

In a parallel computing scenario, the search typically progresses iteratively.
The fitness of each particle is computed in parallel, then the local and global
best points are updated. Following this a new positions for each particle are
computed and the process repeats.

PSO can be made asynchronous by noting that the method in which the
particles move around the search space is not completely dependent on the
fitness computed in the previous iteration. A particle will continue to move
using its previous velocity and the current local and global best positions
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found until a new local or global best position is found. By relaxing this
restriction slightly by allowing to a particle to continue to move in absence of
knowledge of the fitness of previous states, we can utilize the asynchronous
search strategy and remove the scalability limitations of traditional PSO.

APSO works as follows. New positions for particles are generated in a
round robin fashion in response to request work messages. Instead of waiting
for previously sent out particles to be evaluated, new particles are generated
using the current known global best and known local best. This allows the
search to progress and generate new particles asynchronously. When a parti-
cle is evaluated, its fitness, position, velocity are reported and the search is
updated if the particle is a new local or global best. In this way the APSO
performs nearly identically to PSO, without scalability limitations. As more
processors request work, particles are generated further ahead increasing the
exploratory component of the search.

5 MilkyWay@Home: Finding Galactic Substructure
using Genetic Search on Volunteered Computers

5.1 Convergence

5.1.1 Asynchronous Genetic Search

The hybrid simplex method was evaluated using the astronomical modeling
problem detailed by Purnell et al [41]. Performing the evaluation of a sin-
gle model to a small wedge of the sky consisting of approximately 200,000
stars can take between 15 minutes to an hour on a single high end processor.
Because of this, to be able to determine the globally optimal model for that
wedge in any tractable amount of time requires extremely high powered com-
puting environments. To measure the effect of asynchronicity on the hybrid
genetic search, both synchronous and asynchronous computing environments
are used, 1024 processors of an IBM BlueGene/L and a BOINC volunteer
computing project with over 1,000 volunteered computers.

Figure 4 shows the performance of the double shot approach, and the sim-
plex approach with varying numbers of parents N being used to calculate
the centroid on both environments. Previous work has shown that the dou-
ble shot approach significantly outperforms iterative genetic search and asyn-
chronous genetic search using only the average and mutation operators [47].
All approaches converged to the known global optimum of the data. For both
computing environments, a population of size 300 was used, and the mutation
operator was applied 20% of the time, all other members were generated with
the corresponding operator. The range of the probabilistic line search for the
simplex hybrid was defined by the limits l1 = −1.5 and l2 = 1.5. For the syn-
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Fig. 4 Fitness of the best member found averaged over five searches for the double
shot approach and the simplex hybrid with N = 2..5, using the BOINC volunteered
computers and the BlueGene supercomputer.

chronous execution on the BlueGene, each model evaluation was performed
by dividing the work over the 1024 processors, and immediately attempting
to insert the member into the population - in this way only the most evolved
population was used to generate new members and the population was con-
tinuously updated. The asynchronous execution on BOINC generates new
members from the current population whenever users request more work. Af-
ter a user has completed the evaluation of a member, it’s sent to the server
and inserted into the population. There is no guarantee of when the fitness
of a generated member will be returned, or even if it will be returned at all.

On the BlueGene, the hybrid simplex method shows dramatic improve-
ment over the double shot approach, with the difference increasing as more
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Fig. 5 Fitness of the best particle found averaged over five searches for asynchronous
particle swarm optimization on the BOINC volunteered computers, using constants
c1 = c2 = 2.0 and inertia weight w = 0.4, 0.6 and 0.8.

parents are used to calculate the centroid. While the double shot method typ-
ically converges in around 18,000 iterations, the simplex hybrid with N = 4
converges in approximately 8,000. Compared to the 50,000 iterations reported
for traditional iterative genetic search [12], the convergence rate is excellent.
Using BOINC shows similar results, however the convergence rates are not as
fast on the BlueGene, which is to be expected. Generally, increasing the num-
ber of points used to calculate the centroid results in better searches, however
on BOINC the simplex with N = 2 and double shot operators initially seem
to converge more quickly than the more informed simplex with N = 4..10,
which was not the case on the BlueGene. The asynchronous approach on
BOINC may take more iterations, but BOINC is much more accessible as
it is dedicated to the project at hand, while use of the BlueGene is shared
among many researchers. Because of this, even though the quantity of fitness
evaluations done per second is similar for both computing environments, the
BOINC framework can perform more searches and does so at a fraction of
the cost. These results are very promising for the use of asynchronous search
and volunteer computing for computationally intensive scientific modeling.

5.1.2 Asynchronous Particle Swarm Optimization

Asynchronous particle swarm optimization (APSO) was also tested using the
BOINC computing platform, with results competitive to asynchronous ge-
netic search. Figure 5 shows how the search progressed using different values
of the inertia weight w. Typically, regular particle swarm optimization uses
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w = 1, c1 = 2, and c2 = 2 as standard values for constants, however we
found that in an asynchronous setting, lower values of w performed signif-
icantly better. While all values did eventually reach the global optimum, a
value of 0.4 tended to find the optimum the fastest. It is however interest-
ing to note that while values 0.6 and 0.8 initially converge faster, they then
spend much longer zeroing in on the correct value. It could be said that this
is evidence of a higher inertia weight being more exploratory, finding good
possible areas to search, but these higher values lack the required exploitation
of those good areas needed to ultimately find a correct value. It also supports
results found by Dingxue et al. which find that using an adaptive value for
w improves convergence [13].

5.2 Operator Analysis

To better understand the effect of the operators in evolving the population,
as well as the effect of asynchronicity and of a highly heterogeneous comput-
ing environment on the fitness returned, the number of members processed
between the generation and reporting of a members fitness was tracked, as
well as information about how it was generated. For both environments, the
best N was used. Figure 6 shows the percentage of members inserted into
the population and at what position in the population they were inserted
based on what part of the line they were generated with using the simplex
hybrid with N = 4 on the BlueGene. The population is sorted from the best
fit to the least, so the lower the position at which a member is inserted, the
better its fitness with respect to the rest of the population. Figures 7 and 8
show the same information for BOINC and N = 4. To provide a measure of
how far the population evolved while a member was being evaluated, these
results are partitioned by how many other members were reported before the
fitness of the current member was reported. The range of the probabilistic
line search for the simplex was defined by limits l1 = −1.5 and l2 = 1.5 and
the statistics are taken from five separate searches.

On the BlueGene, the best insert rate and quality was from points around
the centroid (generated between limits of 0.5 and -0.5). While inside of the
worst point (1.0 to 0.5) had the highest insert rate, the quality of inserted
members was rather low. Points near the reflection of the worst point through
the centroid (-1.5 to -0.5) tended to have low insert rates, however when
they were inserted they tended to be very fit. Points outside of the worst
member (1.0 to 1.5) had the worst insert rate and the least fit. These results
suggest that the probabilistic simplex search could be further optimized by
restricting the range to limits l1 = −1.5 and l2 = 0.5, by eliminating the
poorest performing range of 0.5 to 1.5.

BOINC showed similar results for quickly reported results (less than 200
members reported while the member was being evaluated) with points gen-
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Fig. 6 Average insert rate and insert position of members based on what part of the
line calculated by the simplex hybrid they were generated on, for N = 4 using the
BlueGene supercomputer. A lower insert position means the member is more fit than
the rest of the population.

erated near the centroid (-0.5 to 0.5) having the best fitness and insert rate
(see Figures 7 and 8). One notable exception was that points generated on
the inside of the worst point (0.5 to 1.0) had a notably lower insert rate and
that points generated near the worst point (0.5 to 1.5) quickly degraded in
terms of insert rate compared to other points. With over 1600 evaluations
being reported during a members round trip time, not a single point gener-
ated past the worst point was inserted. Another point of interest is that while
points generated near the reflection (-1.5 to -0.5) had lower insertion rates
than those near the centroid (-0.5 to 0.5), as the report time increased, their
average insert position stayed the same and eventually had better fitness than
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Fig. 7 Average insert rate of members based on what part of the line calculated by
the simplex hybrid they were generated on, for N = 5 using the BOINC framework.
The results are partitioned by how many other members were reported while the used
members were being generated (0..100 to 1601+) to show the effects of asynchronicity
and of a heterogeneous computing environment.

points generated near the centroid. As with the BlueGene, the results sug-
gest that refining the limit on the probabilistic simplex operator to l1 = −1.5
and l2 = 0.5 would improve the convergence rates. Additionally, it appears
that the result report time does have an effect on which part of the line used
by the probabilistic simplex operator is better to draw new members from.
An intelligent work scheduling mechanism could assign members generated
near the reflection to processors with slower reporting times, and those gen-
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Fig. 8 Average insert position of members based on what part of the line calculated
by the simplex hybrid they were generated on, for N = 4 using the BOINC framework.
A lower insert position means the member is more fit than the rest of the population.
The results are partitioned by how many other members were reported while the used
members were being generated (0..100 to 1601+) to show the effects of asynchronicity
and of a heterogeneous computing environment.
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erated near the centroid to processors with faster reporting times. Also, as
the search progresses, there are fluctuations as to where the best points are
generated from. An adaptive search could refine the limits to improve con-
vergence rates. It is important to note that even the slowest processors retain
their ability to evaluate members that are of benefit to the search, which is
an important attribute for any algorithm running on massively distributed
and heterogeneous environments.

6 Conclusions

Volunteer computing platforms can significantly enable scientists using evo-
lutionary algorithms by providing them access to thousands of processors
worldwide. The heterogeneity inherent in this worldwide computing infras-
tructure can be tackled by using asynchronous versions of evolutionary algo-
rithms, which are better suited to deal with the wide variety of processing
speeds and failure characteristics found in volunteer computing environments.

We have shown a specific application in astronomy, MilkyWay@Home,
that uses asynchronous genetic search on BOINC to discover substructure in
the Milky Way Galaxy from Sloan Digital Sky Survey data. The availability
of more processing power for scientists has the potential to enable better
science: more complex models can be tested on larger data sets, streamlining
the scientific process.

Additional research directions include adapting additional evolutionary
algorithms to the heterogeneous and failure-prone nature of volunteer com-
puting environments, creating generalized scientific computing frameworks
that lower the barrier of entry to new scientific domains, and developing
hybrid mechanisms that can make efficient use of diverse distributed com-
puting environments including supercomputers, grids, clusters, clouds and
the Internet.
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