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Abstract. Computational science is placing new demands on distributed
computing systems as the rate of data acquisition is far outpacing the im-
provements in processor speed. Evolutionary algorithms provide efficient
means of optimizing the increasingly complex models required by differ-
ent scientific projects, which can have very complex search spaces with
many local minima. This work describes different validation strategies
used by MilkyWay@Home, a volunteer computing project created to ad-
dress the extreme computational demands of 3-dimensionally modeling
the Milky Way galaxy, which currently consists of over 27,000 highly het-
erogeneous and volatile computing hosts, which provide a combined com-
puting power of over 1.55 petaflops. The validation strategies presented
form a foundation for efficiently validating evolutionary algorithms on
unreliable or even partially malicious computing systems, and have signif-
icantly reduced the time taken to obtain good fits of MilkyWay@Home’s
astronomical models.
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1 Introduction

The demands of computational science continue to increase as the rates of data
acquisition and modeling complexity far outpace advances in processor speed.
Because of this, highly distributed computing environments are very useful in
achieving the amount of computational power required. A very effective way of
accumulating a large amount of computational power is by utilizing volunteer
computing grids with software such as BOINC [1], which provides software to let
volunteers easily participate in many different computing projects based on their
personal interests. The MilkyWay@Home project 4 has had particular success
using this software, gathering a volunteer base of over 27,000 active computing

4 http://milkyway.cs.rpi.edu
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hosts with a combined computing power of over 1.55 petaflops in a little over
two years.

However, utilizing a volunteer computing grid comes with its own set of
unique challenges. As these projects are open to the public and often open
source, as in the case of MilkyWay@Home, code run on clients can be executed
on any type of hardware, resulting in a very heterogeneous environment. Users
can also be geographically distributed, so latency can be highly heterogeneous
(e.g., MilkyWay@Home has active users in over 130 countries). Additionally,
because users can configure their own hardware and compile the open source
application with hardware specific optimizations, errors from improperly config-
ured hardware and compiled applications must be handled without invalidating
other work being done by the system.

Evolutionary algorithms (EAs) are an approach to performing optimization
of challenging problems in computational science, as they can efficiently find
global minima in challenging search spaces with many local minima. Traditional
methods such as conjugate gradient descent and newton methods quickly get
stuck in local minima and fail in these circumstances. This work examines how
to efficiently perform validation for evolutionary algorithms on volunteer com-
puting grids, using MilkyWay@Home as a test system. Typically many volunteer
computing projects require every result returned by computing hosts to be vali-
dated in some manner, however in the case of evolutionary algorithms the num-
ber of results requiring validation can be significantly reduced. Two approaches
are presented for performing validation. The first is pessimistic, assuming that
results are invalid and waiting for their validation before they are used. The
other is optimistic, using results as soon as they are reported and later reverting
values that are found to be invalid. Using common EAs, differential evolution
and particle swarm optimization, optimistic validation is shown to significantly
improve the convergence rate of the EAs run by MilkyWay@Home.

The remainder of this paper is organised as follows. Section 2 presents the
EAs used in this work. The validation strategies used are given in Section 3
and their performance on MilkyWay@Home is discussed in Section 4. The paper
concludes with a discussion and future work in Section 5.

2 Evolutionary Algorithms for Continuous Search Spaces

Effective approaches to global optimization for continuous search spaces include
differential evolution (DE) and particle swarm optimization (PSO). In general,
individuals are sets of parameters to an objective function which is trying to be
optimized. Applying the objective function to an individual provides the fitness
of that individual, and the evolutionary algorithms evolve individuals through
different heuristics to try and find the best possible fitness, which optimizes the
objective function.
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2.1 Differential Evolution

Differential evolution is an evolutionary algorithm used for continuous search
spaces developed by Storn and Price over 1994–1995 [13]. Unlike other evolu-
tionary algorithms, it does not use a binary encoding strategy or a probability
density function to adapt its parameters, instead it performs mutations based
on the distribution of its population [11]. For a wide range of benchmark func-
tions, it has been shown to outperform or be competitive with other evolutionary
algorithms and particle swarm optimization [15].

Differential evolution evolves individuals by selecting pairs of other individ-
uals, calculating their differential, scaling it and then applying it to another
parent individual. Some kind of recombination (e.g., binary or exponential)
is then performed between the current individual and the parent modified by
the differentials. If the fitness of the generated individual is better than the
current individual, the current individual is replaced with the new one. Dif-
ferential evolution is often described with the following naming convention,
”de/parent/pairs/recombination”, where parent describes how the parent is se-
lected (e.g., best or random), pairs is the number of pairs used to calculate
the differentials, and recombination is the type of recombination applied. Two
common recombination strategies are:

– binomial recombination, bin(p1, p2):

ci =

{

p1

i if r(0, 1) < σ or i = r(0,D)
p2

i otherwise
(1)

– exponential recombination, exp(p1, p2):

ci =

{

p1

i from r(0, 1) < σ or i = r(0,D)
p2

i otherwise
(2)

Which take two parents, where the ith parameters of parents p1 and p2,
p1

i and p2

i respectively, are used to generate the ith parameter of the child, ci.
Binomial recombination selects parameters randomly from p1 at a recombination
rate σ, and always selects at least 1 parameter of p1 randomly, otherwise it uses
the parameter from p2. Exponential recombination selects all parameters from
parent p1 after a randomly chosen parameter, or a random number is generated
lower than the recombination rate, whichever comes first.

In general, a new potential individual ni(l + 1) for a new population l + 1
is generated from the ith individual xi(l) from the previous population l, and
selected if its fitness, f(x), is greater than the previous individual:

xi(l + 1) =

{

ni(l + 1) if f(ni(l + 1)) > f(xi(l))
xi(l) otherwise

(3)

The jth parameter is calculated given p pairs of random individuals from the
population l, where r(l)0 6= ... 6= r(l)2p. θ, φ and σ are the user defined parent
scaling factor, recombination scaling factor and crossover rate, respectively. D
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is the number of parameters in the objective function. b(l) is the best individual
in the population l. Two popular variants, used in this paper, are:

– de/best/p/bin:

ni(l + 1) = bin(xi(l), θb(l)
0

j + φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ]) (4)

– de/rand/p/bin:

ni(l + 1) = bin(xi(l), θr(l)
0

j + φ

p
∑

k=1

[r(l)1k
j − r(l)2k

j ]) (5)

For more detail, Mezura-Montes et al. have studied many different variants
of differential evolution on a broad range of test functions [10].

2.2 Particle Swarm Optimization

Particle swarm optimization was initially introduced by Kennedy and Eber-
hart [9, 7] and is a population based global optimization method based on bi-
ological swarm intelligence, such as bird flocking, fish schooling, etc. This ap-
proach consists of a population of particles, which ”fly” through the search space
based on their previous velocity, their individual best found position (cognitive
intelligence) and the global best found position (social intelligence). Two user
defined constants, c1 and c2, allow modification of the balance between local
(cognitive) and global (social) search. Later, an inertia weight ω was added to
the method by Shi and Eberhart to balance the local and global search capability
of PSO [12] and is used in this work and by most modern PSO implementations.
And recently, PSO has been shown to be effective in peer-to-peer computing
environments by Bánhelyi et al [2]. The population of particles is updated it-
eratively as follows, where x is the position of the particle at iteration t, v is
it’s velocity, p is the individual best for that particle, and g is the global best
position:

vi(t + 1) = ω ∗ vi(t)
+c1 ∗ rand() ∗ (pi − xi(t))
+c2 ∗ rand() ∗ (gi − xi(t))

xi(t + 1) = xi(t) + vi(t + 1)

(6)

3 Validation Strategies

As computing systems get larger, the potential for faulty or erroneous computing
hosts increases. This can also be a concern with applications that may occasion-
ally return incorrect results. In the case of volunteer computing systems such
as MilkyWay@Home, which are open to the public, there is always the risk of
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malicious users or bad or improperly configured hardware returning false results.
Additionally, as volunteer computing platforms such as BOINC [1] typically en-
courage participation by awarding credit for completed work and tracking the
best participants, there is some incentive for cheating to be awarded more credit
than deserved.

Different approaches have been developed to perform validation on volun-
teer computing systems. The BOINC framework provides validation based on
redundancy and reaching a quorum [1]. However, validation of every work unit in
an asynchronous search setting leads to a large amount of wasted computation.
BOINC also provides a strategy which uses a measure of trust. In this strategy,
hosts become more trusted as they return results which validate, and lose trust
as they return results that are invalid. Using this strategy, results from trusted
hosts are assumed to be valid and only occasionally are their results validated
to make sure they are still reporting correct results. This approach is unsuitable
for EAs however, as a single invalid result that remains in the population can
invalidate the entire search. Other work has examined strategies for dissuad-
ing participants in volunteer computing systems from cheating by detecting bad
hosts [14, 8], however these do not address the issue of ensuring correct results.

The amount of validation required by EAs can be significantly reduced when
compared to strategies which validate every result. This is because EAs only
progress when new individuals are inserted into the populations. Individuals
with lower fitness are simply discarded.

Search 0...25,000 Evaluations 25,001 ... 50,000 Evaluations

APSO 476 208

ADE/Best 551 221
Table 1. The average number of individuals inserted into the population during the
given number of evaluations, averaged over 20 searches with different initial parameters.

Data from MilkyWay@Home’s logs has shown that only a small number of
results ever make it into the population. Table 1 shows the average number of
inserts done over 20 different searches done on MilkyWay@Home using data from
Sagittarius stripe 22. The number of inserts for both the first and second 25,000
reported results are shown for asynchronous particle swarm optimization and
differential evolution using best parent selection. It becomes apparent from this
information that only a small number of results ever make it into the population,
less than 4% in the first half of the search and less than 2% in the second
half. Additionally, as the searches progress it becomes more difficult to find new
good search areas and the number of evaluated individuals inserted into the
population decreases. Data from MilkyWay@Home’s logs also show that for a
random sample of 500,000 results, only 2,609, or 0.5% were errors that could
have been inserted into the population.
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By ignoring the erroneous results that would not be inserted into the pop-
ulation, even though they may have a correct result which could potentially
be useful, the amount of computation dedicated to validation can be decreased
dramatically. However, it is important to note that the search will not progress
until better individuals are inserted into its population, so the longer it takes to
verify good results, the slower the search will progress. So if too many resources
are devoted to optimization the search may progress extremely slow.

Fig. 1. The optimistic validation strategy. Results that improve the unvalidated pop-
ulation are used to generate new individuals as soon as they are received, and reverted
to previously validated results if they are found to be invalid. When unvalidated results
are validated, they are inserted into the validated population.

Two different validation strategies have been implemented and tested, pes-
simistic and optimistic. Pessimistic validation assumes results are faulty and only
uses validated results to generate new work (see Figure 2). While this ensures
that newly generated results are generated from valid individuals, progress in the
search is delayed while waiting to validate reported individuals with good fitness.
Optimistic validation assumes results are correct and uses the best known indi-
viduals to generate new work (see Figure 1). This allows the search to progress
as fast as possible, however there is the chance that erroneous individuals will be
used to generate new work until those erroneous results are found to be invalid.

These strategies were implemented by having two populations. One con-
sisting of validated results and the other consisting of unvalidated results. For
pessimistic validation, new individuals are generated by copying the individuals
in the unvalidated population for validation at a specified rate, or by performing
DE or PSO on the validated population otherwise. When an individual in the
unvalidated population is validated, it is inserted into the validated population.
For optimistic validation, new individuals are also generated from the unvali-
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Fig. 2. The pessimistic validation strategy. Results are validated before they are used
to generate new individuals.

dated population at the specified rate, however DE and PSO is also performed
on the unvalidated population for the other generated individuals. When an in-
dividual in the unvalidated population is found to be valid, it is inserted into
the validated population. If an individual is found to be invalid, it is reverted to
the previously validated result in the validated population.

4 Results

The effects of optimistic and pessimistic validation were also tested using Milky-
Way@Home while fitting a model of the Sagittarius dwarf galaxy on data ac-
quired from Data Release 7 of the Sloan Digital Sky Survey. This problem in-
volves calculating how well a model of three tidal streams of stars and a back-
ground function fit a 5 degree wedge of 100,789 observed stars collected such that
the wedge is perpendicular to the direction of the tidal stream’s motion (for more
information about the astronomy and fitness function readers are referred to [4,
5]). In total there are 20 real valued parameters to be optimized in the objective
function. This model is calculated by a wide variety of hosts. The fastest high
end double precision GPUs can calculate the fitness in under two minutes. High
end CPUs require around an hour, and the slowest CPUs can take days. At the
time these results were gathered, MilkyWay@Home had approximately 27,000
volunteered hosts participating in the experiments and a combined computing
power of 1.55 petaflops 5.

Both particle swarm optimization and differential evolution were tested with
a fixed population of 200 individuals. Particle swarm optimization used an inertia

5 Statistics taken from http://boincstats.com
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weight of ω = 0.6 and c1 = c2 = 2.0. Differential evolution used best parent
selection and binomial recombination, i.e., de/best/1/bin, which has been shown
to be a very robust and fast version of differential evolution [10]. Differential
evolution used a pair weight, recombination rate and recombination scales of
θ = φ = σ = 0.5.

Figure 3 and 4 compares optimistic and pessimistic validation for DE/best
and PSO, respectively. Five searches were run with for each validation rate, as
it was increased from 10% to 40%. The best validated fitness presented is the
average of those five searches. For both DE/best and PSO optimistic validation
significantly outperformed pessimistic validation.

Figure 5 compares the best verification strategies and verification rates. For
optimistic validation, DE/best found the best solutions with a validation rate of
20%, while PSO found the best solutions with a validation rate of 40%. For pes-
simistic validation, both PSO and DE/best found the best solutions on average
with a 30% validation rate.

While using optimistic validation significantly improved the convergence rate
of the optimization methods used, it also reduced the effect of the validation rate
on the convergence of these methods. For pessimistic validation, changing the
validation rate seemed to have a great effect at the search convergence rate,
while this effect was significantly reduced for optimistic validation, almost to
the point where the differences could be attributed to noise. However, it is still
very interesting to note that the higher validation rates still outperformed lower
validation rates.

5 Discussion

The requirement of high validation rates for pessimistic validation lends itself to
the conclusion that it is very important to be able to quickly use newly found
good individuals in the generation of new individuals to keep the search pro-
gressing quickly. However, the fact that optimistic validation also requires high
validation rates, in spite of using results for the generation of new individuals
as soon as they are reported, suggests that even a small amount of failures if
not invalidated quickly can have very negative effects on the performance of the
search. This negative effect could be for a few reasons. First, that the effect of
invalid individuals in the search population is extremely negative, considering
the validation rates required when only 0.5% of results reported are invalid. An-
other possibility is that with optimistic validation there could be a large delay
between use of high fitness individuals and their insertion into the validated pop-
ulation. If such high fitness unvalidated individual is later found to be invalid, it
could be reverted to a very old validated one which could significantly degrade
the performance of the search. Yet another possibility involves examining the
types of errors that occur in the system. For both optimization methods used,
DE/best and PSO, the heuristic for generating new individuals always uses the
best individual in the population. If the majority of errors have fitness that is
better than the best individual, these will corrupt all newly generated until they
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Fig. 3. Comparison of the progress of particle swarm optimization on MilkyWay@Home
while optimizing the model for Saggitarius Stripe 22 with different validation rates for
optimistic and pessimistic validation.
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Fig. 4. Comparison of the progress of differential evolution with best parent selection
on MilkyWay@Home while optimizing the model for Saggitarius Stripe 22 with different
validation rates for optimistic and pessimistic validation.
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Fig. 5.

are found to be invalid which could also help explain the negative effects of not
validating individuals quickly enough.

For future work, in order to further examine increasing the efficiency of val-
idation of evolutionary algorithms, it would be interesting to measure the effect
of errors in a controlled environment. Using the simulation framework developed
in previous work [6], it would be possible to simulate errors (both those that are
better than the best individual in the population, and those that only make a
single individual invalid) and analyze these effects for different benchmark op-
timization problems. It would also be interesting to study what rate of errors
causes pessimistic validation to outperform optimistic validation. Another area
of potential research is to combine the validation strategies presented in this
work with those available in BOINC. As opposed to keeping two populations of
validated and unvalidated individuals and generating individuals for verification
by copying them from the unvalidated population, the BOINC software could be
used to handle the validation by quorum on individuals which could potentially
be inserted into the validated population. This would ensure that any potentially
improving result will be validated so that when an individual in the unvalidated
population is found to be invalid, it will roll back only to the last best individual
found. However, this approach can lead to slower validation of results and has
the potential to utilize a significant amount of memory and disk space as the
amount of results awaiting validation can grow unbounded; so those effects must
be studied as well.
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Another potential area of interest is that recently hyper-heuristics have been
shown to be effective in distributed computing scenarios [3]. Using meta or
hyper-heuristics to automatically tune not only the parameters involved in the
optimization methods, but to tune the validation rate could further improve
convergence times.

The results presented show that using optimistic validation can be a very
effective strategy for improving the convergence rates of evolutionary algorithms
on volunteer computing grids, without resorting to validating every result which
can be required for other algorithms. These strategies have also been used on
a live volunteer computing grid with over 27,000 active volunteered computing
hosts and have been utilized to provide effective and efficient validation for the
MilkyWay@Home project.
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